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Nonlinear dynamics of direction-selective recurrent neural media
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The direction selectivity of cortical neurons can be accounted for by asymmetric lateral connections. Such
lateral connectivity leads to a network dynamics with characteristic properties that can be exploited for distin-
guishing in neurophysiological experiments this mechanism for direction selectivity from other possible
mechanisms. We present a mathematical analysis for a class of direction-selective neural models with asym-
metric lateral connections. Contrasting with earlier theoretical studies that have analyzed approximations of the
network dynamics by neglecting nonlinearities using methods from linear systems theory, we study the net-
work dynamics with nonlinearity taken into consideration. We show that asymmetrically coupled networks can
stabilize stimulus-locked traveling pulse solutions that are appropriate for the modeling of the responses of
direction-selective neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the
stability of these solutions breaks down, giving rise to lurching activity waves with specific spatiotemporal
periodicity. These solutions, and the bifurcation by which they arise, cannot be easily accounted for by classical
models for direction selectivity.
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[. INTRODUCTION tions with characteristic spatiotemporal symmetry arises.
Such solutions have been reported before in spiking net-
Most classical models for the direction selectivity of cor- works [9-12] and in brain sliced13,14, and have been
tical neurons have assumed feedforward mechanisms, sut&mediurching activity pulses
as multiplication or gating of afferent thalamo-cortical inputs ~ We find solutions with similar spatiotemporal characteris-
(e.g.[1-3)), or linear spatiotemporal filtering followed by a tics in the absence of any spiking mechanism, self-organized
nonlinear operation, such as squarifegg. [4,5]). More re- by the interplay between the network dynamics and the in-
cently, the existence of strong lateral connectivity has moticoming time-dependent stimulus. This solution type was ob-
vated modeling studies that show that the properties of diserved in our simulations for different types of threshold
rection selective cortical neurons can also be reproduced byonlinearities and over a regime of different parameters.
recurrent neural network models with asymmetric lateral ex- The bifurcation that underlies the transition between
citatory or inhibitory connectiongs,7]. form-stable and lurching wave solutions results from the es-
The relative contribution of feedforward and recurrentsentially nonlinear properties of the network dynamics. For
connectivity to the direction selectivity of cortical neurons this reason, it is crucial that in our mathematical analysis we
remains an unresolved issue. In this paper we provide a difake the threshold nonlinearity of the neurons into account.
ferent perspective by presenting a mathematical ana|y5i5 afhlS contrasts our work with previous studies that have pre-
the nonlinear dynamics that arises in simple nonlinear neur&iénted approximate analyses of similar recurrent network
networks with asymmetric recurrent connections that arénodels by applying methods from linear systems theory

driven by moving input stimuli. We show that such networks[6,8,13. _ _ _
have a class of form-stable solutions, in the following signi- Our mathematical analysis extends and combines methods

fied asstimulus-locked traveling pulseShe amplitude of that have been presented in the literature beffbée-20, and
these traveling pulse solutions depends on the stimulus veépplies them to a new solution class. The characteristic in-
locities because of the asymmetric recurrent interactions igtability and lurching solutions seem to be difficult to ac-
the network, and, therefore, they are suitable for modelingount for on the basis of the classical models for direction
the activity of direction-selective neurons, as demonstrategelectivity. This leads us to conclude that the existence of
by previous studief6—8]. lurching activity pulses provides an experimentally testable
In contrast with these earlier studies, we are able to givdrediction that is very specific for the explanation of direc-
an exact solution for the nonlinear network dynamics and tdion selectivity by asymmetric lateral connections.
characterize the stability of the traveling pulse solutions. We
find that the stability of such solutions 'depends on the gtlmu— Il. BASIC MODEL
lus speed, and can break down outside a certain regime of
stimulus speeds. Outside this regime another class of solu- Dynamic neural fields have been repeatedly proposed as
models for the average behavior of a large ensemble of neu-
rons [17,18,21-24 The scalar neural activity distribution
*Electronic address: xhx@ai.mit.edu u(x,t) characterizes the average activity at titnef an en-
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semble of functionally similar neurons that code for stimulusone-dimensional neural fields and assume that the nonlinear
featurex. Using a continuous approximation of biophysically activation functionf is either a step function, or a linear
spatially discrete neuronal dynamics, it is in some cases poshreshold function.
sible to treat the nonlinear neural dynamics analytically.

The field dynamics of the neural activation variable . STEP ACTIVATION EUNCTION

u(x,t) of our model is described by ) ) o )
We first consider the step activation functiof(z)

=0(z) where®(z)=1 whenz>0 and zero otherwise. This
+u(x,t)=f w(x—x")f(u(x’,t))dx’ +b(x,t). form of activation function approximates the activities of

o neurons that, by saturation, are either active or inactive. For

@) the one-dimensional case, we assume that only a single sta-

. . . . . tionary excited regime with U* (£)>0] exists and is lo-
The left side of this equation models a leaky integrator W|thCated between the pointg(,&%). The validity of this as-

a total input that is given by the right hand side of the equa- . .
tion. This input signal includes a feedforward input term isnligggggndigfnned@ F3n 4]theOnSIhaﬁgu?;rrgﬁnggggih%n?et?;e
b(x,t) and a feedback term that integrates the recurrent con: ' y 9

N contribute to the integral. Moreover, becadise constant in
tributions from other laterally connected neurons. Titer- . . . S
. , . ._this regime this contribution only depends on the boundary
action kernel wx—x") characterizes the average synaptic

* * H H *
connection strength between the neurons coding position }[/r?luets §t|l :nrd & -I ,:czordt;ngly,tr'c]he Srgi"’:'arl Sgi?fpf rEt?IOf i
and the neurons coding positianf is theactivation function . € stationary solution 0beys the ordinary difierential equa

of the neurons. This function is nonlinear and monotonically on,

Ju(x,t)
at

T

increasing. It introduces the nonlinearity that makes it diffi- dU* (&)
cult to analyze the network dynamics. -7V +FU*(E)=W(E-E)—W(E-E5)+B(9),
In the following we consider stimuli with a constant ac- dé

tivity profile that move at a constant velocity. We study @)
how the solutions of the network dynamics, and, in particUyyhere the functioW(-) satisfiesW’ (x) =w(x). The solu-
lar, how their stability changes when the stimulus speesl  {jo of the last equation can be found by treating the bound-

varied. aries¢y and ¢ as fixed parameters and solving E4). To

In _the presence of a §t|mulus t.ha.t moves with a constantycijitate notation we define the following integral operator
velocity v, the mathematical description of the dynamics cang with parameter0:

be simplified by using a moving frame of coordinates by

changing the spatial variable t=x—uvt. In this new frame z

the stimulus is stationanB(£)=b(x,t). With the activity in O[Q(Z);G]EJ g(m)exd (z—m)/a]dm, 5
the new framdJ(&,t) =u(x,t) the dynamics is “

wherez,= —o0 for «<0 andzy= +o for «>0. Using this
operator we define two function$(z)=0[W(z);7rv]/
(= 7v) andG(2)=0O[B(2); v ]/(— 7v). The solution of Eq.
(4) can be written with these functions in the form

:fgw(g‘g'”(u(f"”)dg'*B(f)' @ U* (&) =F(é— &)~ F(£— &)+ G(£). ®

For the boundary pointd)* (£5)=U*(&)=0 must be
satisfied, leading to the transcendental equation system,

JU(&1) AU(&,1)
T ™ E

+U(&1)

A stationary solution in the moving frame has to satisfy

du*(¢)
dé

- TV

+U*(§):J'Qw(g_gr)f(u*(gr))dgr —F(0)+F(§1 - §3)=G(é1), )

F(0)—F(& —é1)=G(&3), ®
+B(§). ) 2o ?

. ) ) from which & and ¢ can be determined. To be consistent
U*(£) corresponds to a traveling pulse solution with veloc-yith our initial assumption, it has to be verified that the

ity v in the original static coordinates. Therefore, the trave"solutionu*(g) indeed has only one excited regime between
ing pulse solution driven by the moving stimulus can begsle and & .

found by solving Eq(3). The stability of the traveling pulse
E:;)n be studied by perturbing the stationary solution in Eq. A. Stability of the traveling pulse solution

The neural field dynamics E@2) is a nonlinear integro- The stability of the traveling pulse solution can be ana-
differential equation. In most cases an analytic treatment ofyzed by perturbing the dynamics around the stationary so-
such equations is impossible. In this paper, we consider twtution in the moving frame. To consider the step threshold
biologically inspired special cases for which an analyticalnonlinearity in the dynamics, we perturb both the wave form
solution can be found. For this purpose we consider onlyand the boundary points. In addition, the perturbation of the
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FIG. 2. Traveling pulse solution and its stability in the step
activation function model. Pangl) shows the velocity tuning
curves and the peak amplitude of the traveling pulse. The solid lines
indicate the theoretical results, while the dots signify the numerical
gimulation results. The velocity is normalized by the time con-
stant of the dynamics in the unit of rad/Panel(b) shows the
largest real parts of the eigenvaldeobtained by solving Eq(9)
numerically. Only solutions corresponding to the negative values of
this function are form stable. Pan@) plots the variations of the
peak amplitude of the pulse. A variance that deviates significantly
érom zero signifies a loss of stability of the traveling pulse solu-

wave form at the boundary points. Based on this, we deteftions. The results are consistent with analysis of the eigenvalues in

mine the eigenvalue equation for the linearized perturbatiof@"€!(®)- Also notice that in panela) the theoretical peak ampli-
tude fits well the simulation results only inside the stable regime.

FIG. 1. Stimulus and activity profile in the step activation func-
tion model. Pane{a) shows the stimulus, and pan@) the activity
m(x,t) at the timet for the traveling pulse solution. The solid line
in (b) shows the result from the calculation, while the circles indi-
cate the numerical simulation results. The interaction kernel used i
this simulation wasw(x)=a, exp(—kdx—Xo|)—a; exp(—ki|x—xq|)
with a,=1, a;=5, k,=0.42, k;=0.1, andxy=3. The stimulus
was a moving bar with widtld=10 and amplitudéh=2. Notice
that the activity profileu(x,t) has only a single excited regime.

boundary points can be related to the perturbation of th

dynamics,
[K(0)—c} (1+ ™) ][K(0)+ch(1+7N)] We simulated the dynamics numerically and compared the
results with the results from the mathematical analysis. The
=K(& —&)K(E — €7, (9)  kernel had the following form:
wherec =dU* (&)/d¢ fori=1,2, and the functioiK(-) is W(X) = ag exp( —Kg|X—Xo|) — a; exp( — ki|x—Xg|),
defined as

wherea, anda; are the amplitudes of excitation and inhibi-
K(z)=0[w(z);7v/(1+7\)](1+ 7N/ (— 1v). tion. X, is an offset that causes the network to be asymmetric
and induces the direction sensitivity.

As stimulusb(x,t) we used a moving “bar” with constant
width and amplitude. Figure 1 plots a snapshot of the activity
eprofile ofu(x,t) and stimulusb(x,t) at a timet in the regime
where the traveling pulse solution is stable. On top of the

analytically calculated profilei(x,t), we also plotted simu-
, , o ) lation results, which show good consistency with the theory.
B. Simulation results of step activation function model We also determined the peak activitiesug,t) as func-

In the previous analysis the only restriction for the inter-tion of the stimulus speed. The peak amplitude as a function
action kernel was that it should allow solutions with a singleof the speed is shown in Fig. 2. Par{@) shows the speed
excited regime. To test our mathematical results we simutuning curve plotted as the dependence of the peak activity
lated the model using an interaction function that was giverof the traveling pulse as a function of the stimulus veloeity
by a difference of two exponential functions, simulating aThe solid line indicates the results from the theoretical solu-
receptive field with asymmetric local excitation and center-tion and the dots indicate the simulation results. Pdhgl
surround inhibition. Lateral connectivity of similar type, but shows the maximum of the real parts of the eigenvalues ob-
typically symmetric with respect to the receptive field center,tained from Eq(9). For stimulus velocities outside a certain
has been used in many models for short range interactions irange this maximum becomes positive indicating a loss of
the visual cortex. The advantage of using exponentials is thatability of the form-stable solution. To verify this result we
one can carry out the integration in E&) explicitly, which  calculated also the variability of the peak activity over time
simplifies the subsequent calculations considerably. after excluding the initial transients from the simulations.

From this equation eigenvaluascan be found numerically.
The traveling pulse solution is asymptotically stable only if
the real parts of all eigenvalues are nonpositive. The de-
tailed derivation of the eigenvalue equation is shown in th
Appendix.
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Traveling Pulse Lurching Wave The ring network dynamics can be written as
| — 7
= —— T—m(6,t)+m(6,t)
= e
e P +
ey ™
e | =[J w(8—6")ym(6',t)(2m)"1do’ +b(6,t)| ,
SPACE SPACE -
FIG. 3. Traveling pulse and lurching wave in step activation (10

function model. The color-coded plots show the spatial-temporal

evolution of the activityu(x,t). The left panel shows the propaga- whereb(6,t) is the time-dependent feedforward input.

tion of the form-stable peak over time. The right panel shows the The network in this form can be transformed to the net-

lurching activity wave that arises when stability is lost. work in the standard form that is given by E€L) by a
change of variables and by transforming the stimulus distri-

Panel(c) shows the variations as function of the stimulusbution. Defining the total network input(6,t) by

velocity. At the velocities for which the eigenvalues indicate

a loss of stability the variability of the amplitudes suddenly G , , _ ,

increases. This indicates that the stationary solution is not u(e,t)zf_ww(a— 6")m(6",t)(2m) "1 do’+b(6,1),

time independent any more, consistent with our interpreta- (11)

tion that the form-stable solution loses stability.

An interesting observation is illustrated in Fig. 3 that we obtain the following dynamics far:
shows the space-time evolution of the activity. The left panel
shows the propagation of the form-stable traveling pulse for .
medium stimulus speeds. The right panel shows the solutiomr—u(6,t)+u(8,t)= J w(6—60")[u(6',t)]"(27) " tde’
that arises when stability is lost. This solution is character- g
ized by a characteristic spatiotemporal periodicity that is de-
fined in the moving coordinate system Ry(y+mLg,t
+nTy)=U(y,t), whereLy and T, are constants that depend ~
on the network dynamics. Solutions of similar type havewhere the transformed stimuliag 6,t) obeys the partial dif-
been described before in different contexts, such as in braiferential equationb(6,t)=rdb(6,t)/dt+b(6,t).
slice experiment$13,14 and in studies with spiking net- For convenience, in the following discussions we use Eq.
works without time-dependent input signals. These solution$10) for the analysis of the system dynamics. As in the pre-
have been termed “lurching waves” because of the periodiovious model, the stimulus moves with a constant velocity
discontinuity of the spatiotemporal evolution of the neuralb(6,t)=B(#—uvt). Again, we analyze traveling pulse solu-
activity [10,11,25. tions that are driven by the stimulus, and their stability.

We have shown here only the comparison between theory
and simulation for exponential interaction kernels and local-
ized bar stimuli. However, we found in additional simulation o . .
studies that lurching activity waves arise very robustly for ~Because the activation function has linear threshold char-
this type of networks also for other forms of interaction ker-acteristics, inside the excited regime for which the total input
nels or input signals. Further evidence for the robustness dfi(6,t)>0] is positive the system is linear. One approach to
the phenomenon of lurching waves is provided in the follow-Solve this dynamics is, therefore, to find the solutions to the

ing by a demonstration that the same phenomenon arises ald§ferential equation assuming the boundaries of the excited

set of self-consistent equations for the solutions to satisfy,
from which the boundaries can be determined.
IV. LINEAR THRESHOLD MODEL By denoting activities in moving coordinates &6(6
—vt,t)=m(4,t), the dynamics can be written as

+b(a,1), (12)

A. General solutions and stability analysis

We also considered a model with an activation funcfion
that had the form of a linear threshold, i.é(z)=[z]" 9 9
=maxz0}. Linear threshold models of similar type have T—M(6,1) — 70 —M(0,1) + M(0,1)

. . : . ot a0
been used before in a variety of neural modeling studies

[22,18,28. It has been argued that firing rates of neurons w +
f w(6— 60" )M(0',t)(2m)"1de’ +B(6)

above threshold typically vary linearly with the stimulus =
strength. Moreover, neurons normally operate far below their
saturation levels. Therefore, a linear threshold characteristic (13
might approximate the activation function relatively well

(cf., e.g.,[27]). To further simplify the model, we consider a  Supposing the excited regime e[ 0,(t),0,(t)], we

ring network with periodic boundary condition on the inter- solve the dynamics by Fourier transforming the above equa-
val Q=[—,m). tion in the spatial domaif— 7, 7). Let
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. - has to be truncated in order to obtain a finite number of
mn(t):J WM(H,t)eXF(inﬁ)(ZW)_ldH Fourier components at the expense of an approximation er-
ror.
and Next we use a simple model that contains only the first
two Fourier components in both the interaction kernel and
. w the input distribution. We modify the model by introducing
wn=f w(@)exp(ing)(2) 1de. asymmetry into the interaction kernel, and study how the

network activity changes as a function of the stimulus veloc-
Then in terms of these Fourier modes, the dynamics can bi(}y' qu this model, a closed form solutiqn .and .stability
Written as ’ nalysis are presente_d that_prowdes an insight into some
rather general properties of linear threshold networks.
The interaction kernel and feedforward input are taken to

o+ (L+iron)m,=> Coym+b,, be of the following form:
|

w(8)=Jy+J,coq 0+ p), (16
forn=0,%£1,...,with
b(6,t)=C{1l—e+ecog 6—6y(t)]} T, a7
Cri=(2m) " 'Wi[(0,— 01) 5 —i(e! ("2 gl
. where the variablgd makes the interaction asymmetric. In
X(n=D"H(1=dn)], the input, the threshold terihis subtracted, anéy(t) =vt is
the input's peak location. This model was introduced by
Hansel and Sompolinsky in their model of cortical orienta-

- b2
— i -1
by = f B(g)exp(in6)(2m)""dé. tion selectivity[ 18], with w(6) being symmetric ant being

2
' static.
where 8, is the Kronecker delta defined as having the value Since the interaction kernel and feedforward input involve
one whenn=1, and zero whem#1. only the first two Fourier components, the Fourier transform
Therefore, the stationary solution in moving coordinatesmethod presented in the previous section can be simplified
is significantly. As a consequence, the dynamics of the network
can be studied in terms of the first two Fourier components
m* =(1+i7vK—C) b, (14)  of M(6,t), namely,my(t) and m,(t). Next we present the
analysis, following similar treatments of Hansel and Sompo-
where matrix K is defined as the diagonal matriK linsky [18].

=diag(0,1,-1,2,-2,...]). The components of the vector  The first Fourier componerty(t) is a real number rep-
m are m,, and those ob areb,,. The total input for the resenting the mean of the neural activities, which is denoted
stationary solution in the moving frame can then be writtenby rq(t) in the following. The second Fourier component

as my(t) is a complex number. Let us denote the amplitude of
my(t) by r,(t). Therefore, in summary we have

ko

U*(9)=>, exp(—in@)}l‘, Cami+B(6), (15
" m(o,H)(2m) tde, (18

ro(t):mo(t):f

which has to satisfy the two boundary conditiods ( 6;)

=U*(#,)=0. From these two equations the stationary val-

ues of#, an_d_ 0, can .be determined. _ fl(t)=|ﬁh(t)|=f
The stability of this traveling pulse solution can be ana-

lyzed by linear perturbation theory. Note that the perturba- 19

tions of the boundary points will not contribute to the linear- . ] )

ized perturbed dynamics because the contribution from thi¥here the phas# (t) is used to make the right hand side of

perturbation issg;U* (6;)=0 for i =1,2. Therefore, the lin- the equation being a real number. _ _

earized perturbation dynamics can be fully characterized by !n terms of the Fourier components, the total input in Eq.

the perturbed Fourier modes with fixed boundaries. Hencd10) can be written as

the stability of the traveling pulse solution is determined by

the eigenvalues of the matri&=— (1 +i7vK—C). If the :f” _ / “14p _

maximum of the real parts of the eigenvaluesfois nega- 1(6.1) ﬂw(e 61Im(0".t)(2m) =6’ +b[ 6= b(t)]

tive, then the stimulus locked traveling pulse is stable.

w

m(0,t)exdi{6—¥(t)}](27) 1de,

—1o(t)+14(t)cod O— D), (20)

B. Linear threshold network with simple kernels wherelo(t) andl,(t) are defined as
The general solution introduced above requires the solu-

tion of a system of equations. In practice, the Fourier series lo(t)=C(1l—€)+Jgro(t)—T, (22)
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(@ 02 where two functiongy(6;) andf,(6.) are defined as
< o1 /\, fo(6c) = [sin(6,) — 6. cog 6;)],
ol - L - - e f1(60)=(2m) Y 6.—sin(26,)/2].
e0
(b) O Interestingly, introducing the time-dependent input and
= 005 asymmetric connections does not change the principle form
£ — of the Fourier component dynamics compared with the case
O with static inputs and symmetric connectidris3]. Instead,
the changes only appear insidg(t) [see Eq.(22)]. This
{c) 0151 property is very helpful for the analysis of the dynamics of
= 01f this system.
£ o5l /T\ Similarly, we can derive the dynamics of the Fourier com-
! . . ponents with orders higher than two. But fortunately, the
°3 2 E 0 o 1 2 3 dynamics in Eqs(25)—(27) is independent of these higher
9 (rad) order components. Moreover, it can be shown that if the

dynamics in Eqs(25—(27) is stable, the dynamics of the
higher order Fourier components is stable as well. Therefore,
the stability of these three-dimensional dynamics fully char-
acterizes that of the neural field E@4).

FIG. 4. Traveling pulse for the linear threshold model with a
simple periodic kerndlEqg. (16)]. Panel(a) shows the stimulus with
a moving peak centered &,. The activation profilem(4,t) is
shown in pane(b). The dashed line indicates its first order Fourier
component with a maximum &dt. Panel(c) shows the profile of the
total input1(6,t). The phase variabl® is defined by the peak C. Traveling pulse solutions

location of the total input. A traveling pulse solution corresponds to a stationary so-

lution in the moving frame. Thereforg,=r;=0 and ¥

I1(t)=€eCcog Oy(t)— D]+ Iiri(t)cog ¥V —>d—p). — v, which lead to

(22

Here, the phase variabie(t) represents the location for the Fo=l1fo( o),
peak of the total input, that i (t) =argmay | (6,t), which =1 (0. cod D — T
should satisfy 1=11f1(6c)cog ),
eCsin(W — fo(1))+Jyry sin(®—¥+5)=0. (23 v =tan(® —¥).
Suppose that, is given. From the above equations, the

Figure 4 shows a snapshot of the network actiwiio,t), Fourier components, andr, can be derived as

the total inputl (6,t), and the stimulud(6,t) at the timet.
Three phase variables are indicated in the figure, with r =[(1—¢€)C—T]fo(6)[—Jo fo(6.) —cog6,)] L,
0y, ¥, and® being the peak location of the input, the first (28)
Fourier mode, and the total inpu¢é,t), respectively.

To write down the dynamics in terms of these Fourier r{1=[(1—€)C—TJ]cogA)f,(0:)[—Jo fo(6)—cog6:)] 2,
components, we need one more step to take care of the rec- (29)
tification nonlinearity. Suppose there is only a single excited

interval 6 (®— 6., P+ 6c) in which the total inpul (6,t)  where the variableA=® — ¥ =atan(rv). Subsequentlyl

is positive. From EQq(20), the critical width can be deter- andl, can be determined from Eg&1) and(22). Substitut-
mined asf.=arccos(-14/1;). Using 6., the dynamics can ing them into Eq.(23) leads to

be rewritten as
1T 1=[Jofo( ) +cos 6) ][ IFF2( ) cog(A)

J
T2rM(6,)+m(60,t)=1y(t)[cod 6—P)—cod 6c)]". —2J;f1(6.)cogA)cog A+ B)+1] 12,
(24 (30
Fourier transforming the above equation, we derive the dywhereI’=eC/(C—T) represents the contrast of the stimu-
namics of the Fourier components, lus. From this equation, the critical width, can be found,
_ using numerical methods. Consequently, the valueg ahd
o= —To+11(1)fo(6e), (25) r, can be determined.
T'rlz —ry+1(t)f(0.)coD— W), (26) D. Existence of traveling pulse solutions
_ The critical width 6, must satisfy Eq(30). The existence
P =1(t)f1(6c)si(DP—V), (27 of traveling pulse solutions depends on whetbgexists for
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a given stimulus velocity. It is possible thatd, does not creasing function of,. Therefore, the optimal velocity™
exist for a particular range af. Next we characterize the for whichry is maximal corresponds to the smallest value of
conditions onv for the existence of a traveling pulse solu- 6. in Eg. (30, that is v™=argmaxry(6:(v))

tion. =argmin, 6.(v).
Let B=[J, fo+cos@)]I'/(I'-1). Then, Eq.(30) can be Taking the derivative with respect  on both sides of
rewritten as Eqg. (30) and using the conditiod .(v™)/dv =0 yields
[J,f, cogA)—cog A+ B)]2=B2—sird(A+ ). o J,f sin(B)
Therefore, for a solutiord, to exist, we must havésin(A 7(1—-B?)
+ B)|<B. Dividing both sides by cog)cos(A), we derive the
condition thatv has to satisfy for the existence 6f When the stimulus contrast is small<1, we haveB
<1 and J;f;~1/cos). Substituting this result into the
V1+ 722 above equation, we find for weak stimulus contra8t=v™*.
|U—U*|$TS(B)B, (3D This implies that the optimal velocity for which the mean
activity is maximal is the intrinsic velocity. This is a nice
wherev* = —tan(B)/ r. property in the sense that it relates the optimal stimulus ve-

The above equation cannot be used to determine floe  lOCity to the network structure. By changing the asymmetry
which a traveling pulse solution arises, since the right handaramete, the network can have different preferred veloci-
side of the equation depends on the unknown variagble ties. Notice that the approximate equality between the opti-
However, it gives some general characterizations about th@al v™ and the intrinsi®* holds only if the stimulus con-

admissible range of . trast is low.
For example, the limit for the stimulus contraBt-0
implies the only admissible =v*, which means that the F. Stability analysis of the traveling pulse

traveling pulse solution has a unique veloaity that is in- A stability analysis can be carried out by perturbing the

dependent from the stir_nulus, an_d determined only by th‘%iynamics of the Fourier components in E625)—(27). The
network dynamics. Solutions of this type have been analyzeg|, 5| inearized perturbation dynamics is shown in the Ap-

before for netyvorks with saturgting threshold_ fun_ctions iNyendix. In the case whesC<1, the perturbed dynamics can
Ref.[28]. In this case the traveling pulse solution is cause e simplified into

purely by the asymmetric structure of the network, param-

etrized here by the variabl@. When the stimulus is not 76T o= (1 20— 1)6r g+ 7 1y SiN(6) 6ry,  (32)
uniform, the traveling pulse solution exists only when the
stimulus velocity is not too different from the intrinsic veloc- - .
ity v*. The smaller the contra®, the smaller is the range of 7O =m " COYB)SIN(fc)JodT o

stimulus speeds for which a traveling pulse solution exists. +{—14+(27) " 134[ . +5sin(26.)/2]cod B)} or ;.
This range is also influenced by the time constarSmaller

7 lead to a larger velocity range. (33)

E. Optimal velocity G. Simulation results for the linear threshold model

The network presented here is asymmetric, and has its Figure 5 shows the comparison between the results from
own intrinsic velocityv* determined by the asymmetry pa- the mathematical analysis and the simulations. Paagel
rameter3. When the network is driven by the stimulus mov- Shows the speed tuning curve plotted as values@ndr,
ing at different velocities the amplitude of the solution is With respect to different stimulus velocities The solid and
modulated as a function of the velocity. This dependencyashed lines indicate calculation results, and the dotted lines
defines thevelocity tuning curvewhich can be measured in 'epresent those from numerical simulations. Pdbeshows
physiological experiments. To characterize the velocity tunihe largest real part of the eigenvalues of the stability matrix
ing curve fully in this network is not easy sing can only ~ obtained by linearizing the three-dimensional Fourier com-
be determined numerically. We focus, therefore, on finding?onent dynamics around the stationary solution as described
the optimal stimulus velocity that leads to the maximal mear" the preceding section. For stimulus velocities outside a
activity ro,. certain range, the maximum of the real parts of the eigenval-

Note thatr, in Eq. (28) only depends org., but not U€S becomes positive mdu;atmg a loss of stability of the
directly onv. Furthermorey, depends org, only through form-stable solution. To verify this result we calculated the

cos@.)/fo(6.) as variations ofr o andr, over time in the simulation. Panéd)
shows the variations as a function of the stimulus velocity. At
ro(0)=[(1—e)C—T][—Jo—cog b.)/fo(6.)] . the velocities for which the eigenvalues indicate a loss of

stability the variations of ; andr, suddenly increase, con-
For 6.€[0,7] it is easy to check théfty(6,) is monotoni-  sistent with our interpretation.
cally increasing, and consequently o@3fy(6,) is mono- Like the results shown before for the step function model
tonically decreasing. Overalty(6.) is a monotonically de- (Fig. 3), Fig. 6 illustrates the space-time evolution of the
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FIG. 5. Traveling pulse solution and its stability in the linear Vv
threshold model. Panéh) shows the velocity tuning curves of
andr ;. The dotted lines indicate numerical simulation results, while ~ FIG. 7. Stable regime of traveling pulse solutions. Shown here
solid and dashed lines are the results from our analytical solutions the regime velocities for which a stable traveling pulse solution
The theoretical results fit well the simulation results in the range ofarises as the intrinsic velocity* changes. The intrinsic velocity*
velocity between the two vertical dashed lines. Pdhekhows the  depends on the asymmetry varialfieof the interaction kernel.
maximum of the real parts of eigenvalues of the stability matrix
obtained by perturbing the dynamics around the stationary solution. SO far, we have shown the traveling pulse and lurching
For stimulus velocities outside a certain range this value become#ave solutions in models with step threshold and linear
positive, indicating a loss of stability of the form-stable solution. threshold activation functions. The development of direction
Panel(c) shows the variations af, (solid curvg andr, (dashed selectivity of the travel pulse solutions among certain veloc-
curve over time determined from the simulation. A nonzero vari- ity range and loss of stability when outside the range are not
ance signifies a loss of stability for the traveling pulse solution,confined only to these two types of models. To demonstrate
consistent with the eigenvalue analysis in paine! The velocityv this, we simulate the dynamics E@l) with a sigmoidal
is normalized by the time constant of the dynamics in theshaped activation function and an asymmetric interaction
unit of radf. Parameters used ar€=5, €=0.01, T=4.9, kernel. Again, we observe the tuning of neural activities to
Jo=-19.8, J,=13.5, and3=0.46. input velocities, and the bifurcation of traveling pulse solu-

tions to lurching waves when the velocity of the input is

activity. The left panel shows the propagation of the form-outside a certain rang&ig. 8).
stable peak over time, whereas the right panel shows the
solution that arises when stability is lost. Like those in the V. CONCLUSION
model with a step threshold, lurching activity pulses arise for
a whole regime of different parameters for networks that In this paper we have presented a mathematical analysis
show substantially direction selective behavior. of a class of models that account for the direction selectivity

The phase diagram of the form-stable traveling pulse soby asymmetric lateral connections between cortical neurons.
lution is plotted in Fig. 7, where we show the range of stimu-Given the large number of recurrent connections in the visual
lus velocity for a stable traveling pulse as the asymmetryeortex, it seems plausible that lateral connections play an

parameters, and consequently the intrinsic velocity* = important role for the realization of direction selectivity
—tan(B)/7], changes. The stable region foris typically  [6,7]. Contrasting with earlier works on such modggs15],
located around the intrinsic velocity* . we have presented a mathematical analysis of the full non-
linear dynamics of such networks that takes the nonlinear
Traveling Pulse Lurching Wave response functions of the neurons into account.

One result from our analysis is that such recurrent models,
for a certain regime of stimulus speeds, have traveling pulse
solutions that are form stable and move with the same speed
as the stimulus. We have termed such solutistismulus-
locked traveling pulsesin the stationary state, these solu-
tions have space-time characteristics that is also compatible
with other models for direction selectivity, e.g., motion en-

FIG. 6. Traveling pulse and lurching wave in the linear thresh-ergy models with feedforward structure, or models with lin-
old model. Shown here is a color-coded plot of spatial-temporaear feedback. In particular, the recurrent mechanism that we
evolution of the activitym(x,t). The left panel shows the propaga- analyzed can account for biologically realistic degrees of ve-
tion of the form-stable peak over time, whereas the right panelocity tuning of cortical neurong8]. The preferred speed of
shows the lurching activity wave that arises when stability is lost. the neurons in such recurrent models is determined by the

—
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(@) 3 . . cation observed in recurrent networks cannot appear in feed-
o5l | forward networks. In models with linear feedback, oscilla-
C tions of the activity could potentially be obtained, e.g., if the
g er '/_\ 1 network contains multiple neuron populations that are con-
1.5\/ 1 nected by excitatory connections. Still it would be difficult to

account for the speed dependence of the bifurcation.
With respect to the mathematics, we have tried to charac-

(b) ) terize a class of solutions of spatially continuous neural net-
05 : : works that is different from solutions have been analyzed in
04l | previous work that apply similar mathematical methods. By

© the presence of a time-dependent stimulus, the stimulus-
g °'3A ; locked traveling pulse solution is different from the stable
g o2y 1 stationary solutions of networks with static inputs that have
0t 1 been repeatedly analyzed in the literaturée.g.
0 . . [16,17,19,21,2P. The stimulus-locked solution is also dif-
10 > v 0 s ferent from self-generated traveling waves or pulses that

_ ) _ o _ . have been studied in different contex®8]. For such solu-
FIG. 8. Traveling pulse solution and its stability with a SigMoi- {55 the pulse propagates with an equilibrium speed that is
dal shaped activation function. Pan) shows that mean peak g ified by the network dynamics, whereas for the stimulus-

activity of the moving solutions and pan@) plots the variations of - |04 traveling pulse solution the propagation speed is
the solution averaged over time. The traveling pulse solution is iven by the stimulus. At least for the linear threshold model
stable only for velocities between the two vertical lines. The veloc-g y ;

ity v is normalized by time constant in the unit of radf. The with smal cqntrast, the spged re_gim_e for which 6? Stimu_lus-
activation function used i§(x) =1 1+exp(—2x)]. The interaction locked traveling puI;e solution eX|§ts IS, .however, in a neigh-
kernel is the difference of two Gaussian functions, but with theborhOOd of the optimal _speed with which a §elf-generated
center shifted,  w(x)=Aq exp — (x—w)2/(202)]— A exd — (x pqlse would propagate in the absence of a tlme-depenQent
—w2(209)] with ,=0.08, oi=1, A,=62, A,=37, and p  Stimulus. The proposed recurrent mechanism for direction
=0.05. The input used is a rectified burtgd,t)=7exg[cos@  Selectivity exploits a kind of “resonance” between the ten-
—ut)—2]"L dency of the network to stabilize a traveling pulse solution
with characteristic speed and the incoming time-dependent
network structure. For example, we show that for the modektimulus activity.
with linear threshold activation fUnCtion, the prEferred Speed We conclude from our ana|ysis that the observation of
for input signals with small contrast is close to the equilib-|yrching activity waves in populations of direction-selective
rium speed of the self-generated traveling pulse solution iheurons in the visual cortex would be a strong indicator for
the absence of a time-dependent stimulus. The speed tunifge relevance of the recurrent mechanism for direction selec-
in the nonlinear model that we analyzed arises because, f@fity that we discussed in this paper. Lurching waves and the
SUffiCiently Strong interaction, the network tends to Stabilizere|ated bifurcations m|ght be experimenta”y observable by
a traveling peak solution that “locks” to the moving activity recording from populations of direction selective neurons.
peak of the stimulus. This solution becomes unstable if thisthe neurons first would have to be clustered according to
locking is lost. their speed selectivity and the centers of their receptive
Our stability analysis shows that the traveling pulse solufields. The responses would have to be time aligned with
tion is stable only within a certain regime of stimulus speedsyespect to the stimulus. Then activity waves could potentially
At the borders of this regime a bifurcation arises and thq:)e observed either by Simp|e histogramming within the dif-
stimulus-locked solution becomes unstable. Such speederent spatiotemporal bins, or by using more sophisticated
dependent bifurcations cannot arise in the classical feedfor[echniques for interpolation, either based on standard regu-
ward models, and in networks with linear feedback. For suchgrization or Bayesian techniqug30—-3J. A potential com-
networks the solutions are either always stable, or the Neplication in the visual cortex might be that multiple popula-
work is unstable. tions of neurons with different speed selectivity might inhibit
An important observation in our simulations is that thegach othef{8]. The same mechanism, however, might be
loss of Stablllty of the stimulus-locked solution is frequently relevant in other cortical areas as well, that are experimen_
accompanied by the formation dfirching activity pulses  tally easier to access. One example is the direction-selective
Lurching activity has been described by different other aupjace cells in the hippocampus that have the advantage that
thors in brain slice13,14, and in artificial spiking net- multiunit recordings with more than 100 electrodes are pos-
works without time-dependent inpytsl,12. Our simulation  gjple [33].
results imply that spiking neurons are not necessary for the
generation of lurching activity waves if a moving stimulus is
present. Such lurching waves cannot be produced by a feed- ACKNOWLEDGMENTS
forward network, in which the output of the network is al-
ways phase locked to the stimulus. Moreover, there is no We acknowledge very helpful discussions with Dr. M.
stability issue in feedforward networks. Therefore, the bifur-Goldman, Dr. D. Jin, Dr. T. Poggio, and Dr. H.S. Seung.
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APPENDIX: STABILITY ANALYSIS
K(0) (61 -&)

i - ion i Y(&1)= 77— Y(&) ———Y(&),
1. Stability of the traveling pulse solution in the step 1 C’f (1+ 7)) 1 C§(1+ ™) 2
threshold model

The stability of the traveling pulse solution is analyzed by

perturbing the stationary solution in the moving coordinate . K(& —¢&7) . K(0) .
system. LetSU(&,t) be a small perturbation df* (£). The Y(&)= YD)~ - Y(&).
; . . . ci(1+7N) c5(1+7N)
linearized perturbation dynamics reads
T‘?éu — 9oV +OU(E,1) For the above equations to have a solution, the transcenden-
at 29 ’ tal Eq.(9) has to be satisfied. From this equation the eigen-

e ek . values\ can be found numerically. The traveling pulse so-
= W)t W(E—§3) 68, (AL) lution is asymptotically stable only if the real parts of all

where §¢; (i=1,2) are the perturbations of the boundarye'genvalueg‘ that solve Eq(9) are nonpositive.

points of the exited regime from the stationary valuesbf

with &= &' + 8¢; satisfyingU (& ,t)=0. Note thats¢; is not 2. Stability of the traveling pulse solution in the linear
independent oBbU (¢,t), and the dependence can be found threshold model
through The stability analysis is carried out by perturbing the dy-
JU(E 1) namics of the Fou_rier components in Ecﬁ$5)—(27). The _
U(E+ 88 H)=U(& )+ ;55#0(5&2):0. general procedure is to perturb the dynamics first, which in-
9¢ volves the perturbation of terms suéli., 6P, andAl(t).

To determine these terms, we subsequently perturb Egs.

SinceU (& ,t)=8U(&F 1), to the first order we have L = ~
(21)—(23). Defining ®=®— 0, and V=V — 6,, the per-

8&=—oU(&" blck, turbed linearized dynamics can be summarized as follows:
whereci*EdU_*(gi)/dg. Substituting this back into the per- raro—(J—a—l Sro+J; cog D — W+ g3) n( 0c) Sy
turbed dynamics, we derive the perturbed dynamics with per- T
turbations inU only n( )
— eC sin(®)——= 5V,
d8U d8U
T T T OU(E) = wie— &) SU(EN 1)
at & c*
. ~ o~ sin( 00) ac
W(E—E5) Tor,=cogd—-V) Jobro+| —1+J4 2—005(,8)
—U(& . m i
¢ sin(26,)
: . : . + co§2(—W)+ ]| | ory
To check its stability, we substitute a solution of the form 4w
SU(&,t)=eMY(&) into the above dynamics and derive the .
equation forY(¢) —€C ﬁsin(\if)+Sm(z@sin(z&a—qr) ov
2 41
W(E—€7)
—mY (O (T POV(E = — V(&) , _ ,
! 116V =sin(® — W) ——=J,8r o+ —Tv—Jl(—CSin(B)
w(é- &) " o
2
— Y(&) sn( 0c>
3 sif2(d—V)— g1} | or,
We solve this equation by first assuming thég¢y) and P - sin(26,) 5
Y(&;) are constant, and afterwards we give self-consistent —€eC 2—°cos{\lf)— ) cos{2<I>—\If)] ov
T

conditions for the solutions ag7 and &5 to satisfy. The
solution of the above equation is
To determine the stability of the traveling pulse solution,

K(&—¢7) L. K(E-€) we have to analyze the dynamics of these three coupled dif-

Y(é)=——Y -————Y(&), (A2 ~
© ci(1+7\) (&1) c5(14+7\) (&), A2 ferential equations. 1£C<1, then the dynamics oV is

decoupled from that obr, and 6r, and the stability condi-
The solutionY (&) in Eq. (A2) has to satisfy two self- tion can be approximated by the stability of the two dynam-
consistency equations for the solutionségtand &5 ics Egs.(32) and(33).
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