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Nonlinear dynamics of direction-selective recurrent neural media
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The direction selectivity of cortical neurons can be accounted for by asymmetric lateral connections. Such
lateral connectivity leads to a network dynamics with characteristic properties that can be exploited for distin-
guishing in neurophysiological experiments this mechanism for direction selectivity from other possible
mechanisms. We present a mathematical analysis for a class of direction-selective neural models with asym-
metric lateral connections. Contrasting with earlier theoretical studies that have analyzed approximations of the
network dynamics by neglecting nonlinearities using methods from linear systems theory, we study the net-
work dynamics with nonlinearity taken into consideration. We show that asymmetrically coupled networks can
stabilize stimulus-locked traveling pulse solutions that are appropriate for the modeling of the responses of
direction-selective neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the
stability of these solutions breaks down, giving rise to lurching activity waves with specific spatiotemporal
periodicity. These solutions, and the bifurcation by which they arise, cannot be easily accounted for by classical
models for direction selectivity.
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I. INTRODUCTION

Most classical models for the direction selectivity of co
tical neurons have assumed feedforward mechanisms,
as multiplication or gating of afferent thalamo-cortical inpu
~e.g. @1–3#!, or linear spatiotemporal filtering followed by
nonlinear operation, such as squaring~e.g. @4,5#!. More re-
cently, the existence of strong lateral connectivity has m
vated modeling studies that show that the properties of
rection selective cortical neurons can also be reproduce
recurrent neural network models with asymmetric lateral
citatory or inhibitory connections@6,7#.

The relative contribution of feedforward and recurre
connectivity to the direction selectivity of cortical neuro
remains an unresolved issue. In this paper we provide a
ferent perspective by presenting a mathematical analysi
the nonlinear dynamics that arises in simple nonlinear ne
networks with asymmetric recurrent connections that
driven by moving input stimuli. We show that such networ
have a class of form-stable solutions, in the following sig
fied asstimulus-locked traveling pulses. The amplitude of
these traveling pulse solutions depends on the stimulus
locities because of the asymmetric recurrent interaction
the network, and, therefore, they are suitable for mode
the activity of direction-selective neurons, as demonstra
by previous studies@6–8#.

In contrast with these earlier studies, we are able to g
an exact solution for the nonlinear network dynamics and
characterize the stability of the traveling pulse solutions.
find that the stability of such solutions depends on the stim
lus speed, and can break down outside a certain regim
stimulus speeds. Outside this regime another class of s
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tions with characteristic spatiotemporal symmetry aris
Such solutions have been reported before in spiking n
works @9–12# and in brain slices@13,14#, and have been
termedlurching activity pulses.

We find solutions with similar spatiotemporal character
tics in the absence of any spiking mechanism, self-organi
by the interplay between the network dynamics and the
coming time-dependent stimulus. This solution type was
served in our simulations for different types of thresho
nonlinearities and over a regime of different parameters.

The bifurcation that underlies the transition betwe
form-stable and lurching wave solutions results from the
sentially nonlinear properties of the network dynamics. F
this reason, it is crucial that in our mathematical analysis
take the threshold nonlinearity of the neurons into accou
This contrasts our work with previous studies that have p
sented approximate analyses of similar recurrent netw
models by applying methods from linear systems the
@6,8,15#.

Our mathematical analysis extends and combines meth
that have been presented in the literature before@16–20#, and
applies them to a new solution class. The characteristic
stability and lurching solutions seem to be difficult to a
count for on the basis of the classical models for direct
selectivity. This leads us to conclude that the existence
lurching activity pulses provides an experimentally testa
prediction that is very specific for the explanation of dire
tion selectivity by asymmetric lateral connections.

II. BASIC MODEL

Dynamic neural fields have been repeatedly proposed
models for the average behavior of a large ensemble of n
rons @17,18,21–24#. The scalar neural activity distribution
u(x,t) characterizes the average activity at timet of an en-
©2002 The American Physical Society04-1
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semble of functionally similar neurons that code for stimu
featurex. Using a continuous approximation of biophysica
spatially discrete neuronal dynamics, it is in some cases
sible to treat the nonlinear neural dynamics analytically.

The field dynamics of the neural activation variab
u(x,t) of our model is described by

t
]u~x,t !

]t
1u~x,t !5E

V
w~x2x8! f „u~x8,t !…dx81b~x,t !.

~1!

The left side of this equation models a leaky integrator w
a total input that is given by the right hand side of the eq
tion. This input signal includes a feedforward input ter
b(x,t) and a feedback term that integrates the recurrent c
tributions from other laterally connected neurons. Theinter-
action kernel w(x2x8) characterizes the average synap
connection strength between the neurons coding positiox8
and the neurons coding positionx. f is theactivation function
of the neurons. This function is nonlinear and monotonica
increasing. It introduces the nonlinearity that makes it di
cult to analyze the network dynamics.

In the following we consider stimuli with a constant a
tivity profile that move at a constant velocityv. We study
how the solutions of the network dynamics, and, in parti
lar, how their stability changes when the stimulus speedv is
varied.

In the presence of a stimulus that moves with a cons
velocity v, the mathematical description of the dynamics c
be simplified by using a moving frame of coordinates
changing the spatial variable toj5x2vt. In this new frame
the stimulus is stationary:B(j)5b(x,t). With the activity in
the new frameU(j,t)5u(x,t) the dynamics is

t
]U~j,t !

]t
2tv

]U~j,t !

]j
1U~j,t !

5E
V

w~j2j8! f „U~j8,t !…dj81B~j!. ~2!

A stationary solution in the moving frame has to satisfy

2tv
dU* ~j!

dj
1U* ~j!5E

V
w~j2j8! f „U* ~j8!…dj8

1B~j!. ~3!

U* (j) corresponds to a traveling pulse solution with velo
ity v in the original static coordinates. Therefore, the trav
ing pulse solution driven by the moving stimulus can
found by solving Eq.~3!. The stability of the traveling pulse
can be studied by perturbing the stationary solution in
~2!.

The neural field dynamics Eq.~2! is a nonlinear integro-
differential equation. In most cases an analytic treatmen
such equations is impossible. In this paper, we consider
biologically inspired special cases for which an analyti
solution can be found. For this purpose we consider o
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one-dimensional neural fields and assume that the nonli
activation functionf is either a step function, or a linea
threshold function.

III. STEP ACTIVATION FUNCTION

We first consider the step activation functionf (z)
5Q(z) whereQ(z)51 whenz.0 and zero otherwise. This
form of activation function approximates the activities
neurons that, by saturation, are either active or inactive.
the one-dimensional case, we assume that only a single
tionary excited regime with@U* (j).0# exists and is lo-
cated between the points (j1* ,j2* ). The validity of this as-
sumption depends on the shape of the inputB(j) and the
interaction kernelw @34#. Only neurons inside this regim
contribute to the integral. Moreover, becausef is constant in
this regime this contribution only depends on the bound
valuesj1* andj2* . Accordingly, the spatial shapeU* (j) of
the stationary solution obeys the ordinary differential eq
tion,

2tv
dU* ~j!

dj
1U* ~j!5W~j2j1* !2W~j2j2* !1B~j!,

~4!

where the functionW(•) satisfiesW8(x)5w(x). The solu-
tion of the last equation can be found by treating the bou
ariesj1* andj2* as fixed parameters and solving Eq.~4!. To
facilitate notation we define the following integral operat
O with parameteraÞ0:

O@g~z!;a#[E
z0

z

g~m!exp@~z2m!/a#dm, ~5!

wherez052` for a,0 andz051` for a.0. Using this
operator we define two functionsF(z)5O@W(z);tv#/
(2tv) andG(z)5O@B(z);tv#/(2tv). The solution of Eq.
~4! can be written with these functions in the form

U* ~j!5F~j2j1* !2F~j2j2* !1G~j!. ~6!

For the boundary points,U* (j1* )5U* (j2* )50 must be
satisfied, leading to the transcendental equation system,

2F~0!1F~j1* 2j2* !5G~j1* !, ~7!

F~0!2F~j2* 2j1* !5G~j2* !, ~8!

from which j1* andj2* can be determined. To be consiste
with our initial assumption, it has to be verified that th
solutionU* (j) indeed has only one excited regime betwe
j1* andj2* .

A. Stability of the traveling pulse solution

The stability of the traveling pulse solution can be an
lyzed by perturbing the dynamics around the stationary
lution in the moving frame. To consider the step thresh
nonlinearity in the dynamics, we perturb both the wave fo
and the boundary points. In addition, the perturbation of
4-2
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boundary points can be related to the perturbation of
wave form at the boundary points. Based on this, we de
mine the eigenvalue equation for the linearized perturba
dynamics,

@K~0!2c1* ~11tl!#@K~0!1c2* ~11tl!#

5K~j1* 2j2* !K~j2* 2j1* !, ~9!

whereci* [dU* (j i)/dj for i 51,2, and the functionK(•) is
defined as

K~z![O@w~z!;tv/~11tl!#~11tl!/~2tv !.

From this equation eigenvaluesl can be found numerically
The traveling pulse solution is asymptotically stable only
the real parts of all eigenvaluesl are nonpositive. The de
tailed derivation of the eigenvalue equation is shown in
Appendix.

B. Simulation results of step activation function model

In the previous analysis the only restriction for the inte
action kernel was that it should allow solutions with a sing
excited regime. To test our mathematical results we sim
lated the model using an interaction function that was giv
by a difference of two exponential functions, simulating
receptive field with asymmetric local excitation and cent
surround inhibition. Lateral connectivity of similar type, b
typically symmetric with respect to the receptive field cent
has been used in many models for short range interaction
the visual cortex. The advantage of using exponentials is
one can carry out the integration in Eq.~5! explicitly, which
simplifies the subsequent calculations considerably.

FIG. 1. Stimulus and activity profile in the step activation fun
tion model. Panel~a! shows the stimulus, and panel~b! the activity
m(x,t) at the timet for the traveling pulse solution. The solid lin
in ~b! shows the result from the calculation, while the circles in
cate the numerical simulation results. The interaction kernel use
this simulation wasw(x)5ae exp(2keux2x0u)2ai exp(2kiux2x0u)
with ae51, ai55, ke50.42, ki50.1, and x053. The stimulus
was a moving bar with widthd510 and amplitudeh52. Notice
that the activity profileu(x,t) has only a single excited regime.
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We simulated the dynamics numerically and compared
results with the results from the mathematical analysis. T
kernel had the following form:

w~x!5ae exp~2keux2x0u!2ai exp~2ki ux2x0u!,

whereae andai are the amplitudes of excitation and inhib
tion. x0 is an offset that causes the network to be asymme
and induces the direction sensitivity.

As stimulusb(x,t) we used a moving ‘‘bar’’ with constan
width and amplitude. Figure 1 plots a snapshot of the activ
profile of u(x,t) and stimulusb(x,t) at a timet in the regime
where the traveling pulse solution is stable. On top of
analytically calculated profileu(x,t), we also plotted simu-
lation results, which show good consistency with the theo

We also determined the peak activities ofu(x,t) as func-
tion of the stimulus speed. The peak amplitude as a func
of the speed is shown in Fig. 2. Panel~a! shows the speed
tuning curve plotted as the dependence of the peak act
of the traveling pulse as a function of the stimulus velocityv.
The solid line indicates the results from the theoretical so
tion and the dots indicate the simulation results. Panel~b!
shows the maximum of the real parts of the eigenvalues
tained from Eq.~9!. For stimulus velocities outside a certa
range this maximum becomes positive indicating a loss
stability of the form-stable solution. To verify this result w
calculated also the variability of the peak activity over tim
after excluding the initial transients from the simulation

in

FIG. 2. Traveling pulse solution and its stability in the st
activation function model. Panel~a! shows the velocity tuning
curves and the peak amplitude of the traveling pulse. The solid l
indicate the theoretical results, while the dots signify the numer
simulation results. The velocityv is normalized by the time con
stant of the dynamics in the unit of rad/t. Panel ~b! shows the
largest real parts of the eigenvaluel obtained by solving Eq.~9!
numerically. Only solutions corresponding to the negative value
this function are form stable. Panel~c! plots the variations of the
peak amplitude of the pulse. A variance that deviates significa
from zero signifies a loss of stability of the traveling pulse so
tions. The results are consistent with analysis of the eigenvalue
panel~b!. Also notice that in panel~a! the theoretical peak ampli
tude fits well the simulation results only inside the stable regim
4-3



us
te
ly
n
ta

at
ne
fo
tio
te
de

d
ve
ra
-
on
d
ra

o
a
n

fo
r

s
w
a

n

e
ie
n
s
e

is
ll
a
r-

et-

tri-

Eq.
re-
ity
-

ar-
ut
to

the
ited
to a
sfy,

ua-

on
ra
-
th

XIAOHUI XIE AND MARTIN A. GIESE PHYSICAL REVIEW E 65 051904
Panel ~c! shows the variations as function of the stimul
velocity. At the velocities for which the eigenvalues indica
a loss of stability the variability of the amplitudes sudden
increases. This indicates that the stationary solution is
time independent any more, consistent with our interpre
tion that the form-stable solution loses stability.

An interesting observation is illustrated in Fig. 3 th
shows the space-time evolution of the activity. The left pa
shows the propagation of the form-stable traveling pulse
medium stimulus speeds. The right panel shows the solu
that arises when stability is lost. This solution is charac
ized by a characteristic spatiotemporal periodicity that is
fined in the moving coordinate system byU(y1mL0 ,t
1nT0)5U(y,t), whereL0 andT0 are constants that depen
on the network dynamics. Solutions of similar type ha
been described before in different contexts, such as in b
slice experiments@13,14# and in studies with spiking net
works without time-dependent input signals. These soluti
have been termed ‘‘lurching waves’’ because of the perio
discontinuity of the spatiotemporal evolution of the neu
activity @10,11,25#.

We have shown here only the comparison between the
and simulation for exponential interaction kernels and loc
ized bar stimuli. However, we found in additional simulatio
studies that lurching activity waves arise very robustly
this type of networks also for other forms of interaction ke
nels or input signals. Further evidence for the robustnes
the phenomenon of lurching waves is provided in the follo
ing by a demonstration that the same phenomenon arises
for another type of threshold function.

IV. LINEAR THRESHOLD MODEL

We also considered a model with an activation functiof
that had the form of a linear threshold, i.e.,f (z)5@z#1

5max$z,0%. Linear threshold models of similar type hav
been used before in a variety of neural modeling stud
@22,18,26#. It has been argued that firing rates of neuro
above threshold typically vary linearly with the stimulu
strength. Moreover, neurons normally operate far below th
saturation levels. Therefore, a linear threshold character
might approximate the activation function relatively we
~cf., e.g.,@27#!. To further simplify the model, we consider
ring network with periodic boundary condition on the inte
val V5@2p,p).

FIG. 3. Traveling pulse and lurching wave in step activati
function model. The color-coded plots show the spatial-tempo
evolution of the activityu(x,t). The left panel shows the propaga
tion of the form-stable peak over time. The right panel shows
lurching activity wave that arises when stability is lost.
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The ring network dynamics can be written as

t
]

]t
m~u,t !1m~u,t !

5F E
2p

p

w~u2u8!m~u8,t !~2p!21 du81b~u,t !G1

,

~10!

whereb(u,t) is the time-dependent feedforward input.
The network in this form can be transformed to the n

work in the standard form that is given by Eq.~1! by a
change of variables and by transforming the stimulus dis
bution. Defining the total network inputu(u,t) by

u~u,t ![E
2p

p

w~u2u8!m~u8,t !~2p!21 du81b~u,t !,

~11!

we obtain the following dynamics foru:

t
]

]t
u~u,t !1u~u,t !5E

2p

p

w~u2u8!@u~u8,t !#1~2p!21 du8

1b̃~u,t !, ~12!

where the transformed stimulusb̃(u,t) obeys the partial dif-
ferential equation,b̃(u,t)5t]b(u,t)/]t1b(u,t).

For convenience, in the following discussions we use
~10! for the analysis of the system dynamics. As in the p
vious model, the stimulus moves with a constant veloc
b(u,t)5B(u2vt). Again, we analyze traveling pulse solu
tions that are driven by the stimulus, and their stability.

A. General solutions and stability analysis

Because the activation function has linear threshold ch
acteristics, inside the excited regime for which the total inp
@u(u,t).0# is positive the system is linear. One approach
solve this dynamics is, therefore, to find the solutions to
differential equation assuming the boundaries of the exc
regime are given. The conditions at the boundaries lead
set of self-consistent equations for the solutions to sati
from which the boundaries can be determined.

By denoting activities in moving coordinates asM (u
2vt,t)5m(u,t), the dynamics can be written as

t
]

]t
M ~u,t !2tv

]

]u
M ~u,t !1M ~u,t !

5F E
2p

p

w~u2u8!M ~u8,t !~2p!21 du81B~u!G1

.

~13!

Supposing the excited regime isuP@u1(t),u2(t)#, we
solve the dynamics by Fourier transforming the above eq
tion in the spatial domain@2p,p). Let

l

e

4-4
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NONLINEAR DYNAMICS OF DIRECTION-SELECTIVE . . . PHYSICAL REVIEW E 65 051904
m̂n~ t !5E
2p

p

M ~u,t !exp~ inu!~2p!21 du

and

ŵn5E
2p

p

w~u!exp~ inu!~2p!21 du.

Then in terms of these Fourier modes, the dynamics can
written as

tṁ̂n1~11 i tvn!m̂n5(
l

Cnlm̂l1b̂n ,

for n50,61, . . . ,with

Cnl5~2p!21ŵl@~u22u1!dnl2 i ~ei (n2 l )u22ei (n2 l )u1!

3~n2 l !21~12dnl!#,

b̂n5E
u1

u2
B~u!exp~ inu!~2p!21 du.

wherednl is the Kronecker delta defined as having the va
one whenn5 l , and zero whennÞ l .

Therefore, the stationary solution in moving coordina
is

m̂* 5~ I 1 i tvK2C!21b̂, ~14!

where matrix K is defined as the diagonal matrixK
[diag(@0,1,21,2,22, . . .#). The components of the vecto
m̂ are m̂n , and those ofb̂ are b̂n . The total input for the
stationary solution in the moving frame can then be writ
as

U* ~u!5(
n

exp~2 inu!(
l

Cnlm̂l* 1B~u!, ~15!

which has to satisfy the two boundary conditionsU* (u1)
5U* (u2)50. From these two equations the stationary v
ues ofu1 andu2 can be determined.

The stability of this traveling pulse solution can be an
lyzed by linear perturbation theory. Note that the pertur
tions of the boundary points will not contribute to the linea
ized perturbed dynamics because the contribution from
perturbation isdu iU* (u i)50 for i 51,2. Therefore, the lin-
earized perturbation dynamics can be fully characterized
the perturbed Fourier modes with fixed boundaries. Hen
the stability of the traveling pulse solution is determined
the eigenvalues of the matrixA52(I 1 i tvK2C). If the
maximum of the real parts of the eigenvalues ofA is nega-
tive, then the stimulus locked traveling pulse is stable.

B. Linear threshold network with simple kernels

The general solution introduced above requires the s
tion of a system of equations. In practice, the Fourier se
05190
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has to be truncated in order to obtain a finite number
Fourier components at the expense of an approximation
ror.

Next we use a simple model that contains only the fi
two Fourier components in both the interaction kernel a
the input distribution. We modify the model by introducin
asymmetry into the interaction kernel, and study how
network activity changes as a function of the stimulus vel
ity. For this model, a closed form solution and stabili
analysis are presented that provides an insight into so
rather general properties of linear threshold networks.

The interaction kernel and feedforward input are taken
be of the following form:

w~u!5J01J1 cos~u1b!, ~16!

b~u,t !5C$12e1e cos@u2u0~ t !#%2T, ~17!

where the variableb makes the interaction asymmetric. I
the input, the threshold termT is subtracted, andu0(t)5vt is
the input’s peak location. This model was introduced
Hansel and Sompolinsky in their model of cortical orien
tion selectivity@18#, with w(u) being symmetric andb being
static.

Since the interaction kernel and feedforward input invo
only the first two Fourier components, the Fourier transfo
method presented in the previous section can be simpli
significantly. As a consequence, the dynamics of the netw
can be studied in terms of the first two Fourier compone
of M (u,t), namely,m̂0(t) and m̂1(t). Next we present the
analysis, following similar treatments of Hansel and Somp
linsky @18#.

The first Fourier componentm̂0(t) is a real number rep-
resenting the mean of the neural activities, which is deno
by r 0(t) in the following. The second Fourier compone
m̂1(t) is a complex number. Let us denote the amplitude
m̂1(t) by r 1(t). Therefore, in summary we have

r 0~ t !5m̂0~ t !5E
2p

p

m~u,t !~2p!21 du, ~18!

r 1~ t !5um̂1~ t !u5E
2p

p

m~u,t !exp@ i $u2C~ t !%#~2p!21 du,

~19!

where the phaseC(t) is used to make the right hand side
the equation being a real number.

In terms of the Fourier components, the total input in E
~10! can be written as

I ~u,t !5E
2p

p

w~u2u8!m~u8,t !~2p!21 du81b@u2u0~ t !#

5I 0~ t !1I 1~ t !cos~u2F!, ~20!

whereI 0(t) and I 1(t) are defined as

I 0~ t !5C~12e!1J0r 0~ t !2T, ~21!
4-5
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XIAOHUI XIE AND MARTIN A. GIESE PHYSICAL REVIEW E 65 051904
I 1~ t !5eC cos@u0~ t !2F#1J1r 1~ t !cos~C2F2b!.
~22!

Here, the phase variableF(t) represents the location for th
peak of the total input, that is,F(t)5argmaxu I (u,t), which
should satisfy

eC sin„C2u0~ t !…1J1r 1 sin~F2C1b!50. ~23!

Figure 4 shows a snapshot of the network activitym(u,t),
the total inputI (u,t), and the stimulusb(u,t) at the timet.
Three phase variables are indicated in the figure, w
u0 , C, andF being the peak location of the input, the fir
Fourier mode, and the total inputI (u,t), respectively.

To write down the dynamics in terms of these Four
components, we need one more step to take care of the
tification nonlinearity. Suppose there is only a single exci
interval uP(F2uc ,F1uc) in which the total inputI (u,t)
is positive. From Eq.~20!, the critical width can be deter
mined asuc5arccos(2I 0 /I 1). Using uc , the dynamics can
be rewritten as

t
]

]t
m~u,t !1m~u,t !5I 1~ t !@cos~u2F!2cos~uc!#

1.

~24!

Fourier transforming the above equation, we derive the
namics of the Fourier components,

t ṙ 052r 01I 1~ t ! f 0~uc!, ~25!

t ṙ 152r 11I 1~ t ! f 1~uc!cos~F2C!, ~26!

tr 1Ċ5I 1~ t ! f 1~uc!sin~F2C!, ~27!

FIG. 4. Traveling pulse for the linear threshold model with
simple periodic kernel@Eq. ~16!#. Panel~a! shows the stimulus with
a moving peak centered atu0. The activation profilem(u,t) is
shown in panel~b!. The dashed line indicates its first order Four
component with a maximum atC. Panel~c! shows the profile of the
total input I (u,t). The phase variableF is defined by the peak
location of the total input.
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where two functionsf 0(uc) and f 1(uc) are defined as

f 0~uc!5p21@sin~uc!2uc cos~uc!#,

f 1~uc!5~2p!21@uc2sin~2uc!/2#.

Interestingly, introducing the time-dependent input a
asymmetric connections does not change the principle f
of the Fourier component dynamics compared with the c
with static inputs and symmetric connections@18#. Instead,
the changes only appear insideI 1(t) @see Eq.~22!#. This
property is very helpful for the analysis of the dynamics
this system.

Similarly, we can derive the dynamics of the Fourier co
ponents with orders higher than two. But fortunately, t
dynamics in Eqs.~25!–~27! is independent of these highe
order components. Moreover, it can be shown that if
dynamics in Eqs.~25!–~27! is stable, the dynamics of th
higher order Fourier components is stable as well. Theref
the stability of these three-dimensional dynamics fully ch
acterizes that of the neural field Eq.~24!.

C. Traveling pulse solutions

A traveling pulse solution corresponds to a stationary
lution in the moving frame. Therefore,ṙ 05 ṙ 150 and Ċ
5v, which lead to

r 05I 1f 0~uc!,

r 15I 1f 1~uc!cos~F2C!,

tv5tan~F2C!.

Suppose thatuc is given. From the above equations, th
Fourier componentsr 0 and r 1 can be derived as

r 05@~12e!C2T# f 0~uc!@2J0 f 0~uc!2cos~uc!#
21,

~28!

r 15@~12e!C2T#cos~D! f 1~uc!@2J0 f 0~uc!2cos~uc!#
21,

~29!

where the variableD[F2C5atan(tv). Subsequently,I 0
andI 1 can be determined from Eqs.~21! and~22!. Substitut-
ing them into Eq.~23! leads to

12G215@J0f 0~uc!1cos~uc!#@J1
2f 1

2~uc!cos2~D!

22J1f 1~uc!cos~D!cos~D1b!11#21/2,

~30!

whereG[eC/(C2T) represents the contrast of the stim
lus. From this equation, the critical widthuc can be found,
using numerical methods. Consequently, the values ofr 0 and
r 1 can be determined.

D. Existence of traveling pulse solutions

The critical widthuc must satisfy Eq.~30!. The existence
of traveling pulse solutions depends on whetheruc exists for
4-6
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a given stimulus velocityv. It is possible thatuc does not
exist for a particular range ofv. Next we characterize the
conditions onv for the existence of a traveling pulse sol
tion.

Let B5@J0 f 01cos(uc)#G/(G21). Then, Eq.~30! can be
rewritten as

@J1f 1 cos~D!2cos~D1b!#25B22sin2~D1b!.

Therefore, for a solutionuc to exist, we must haveusin(D
1b)u<B. Dividing both sides by cos(b)cos(D), we derive the
condition thatv has to satisfy for the existence ofuc

uv2v* u<
A11t2v2

t cos~b!
B, ~31!

wherev* [2tan(b)/t.
The above equation cannot be used to determine thev for

which a traveling pulse solution arises, since the right ha
side of the equation depends on the unknown variableuc .
However, it gives some general characterizations about
admissible range ofv.

For example, the limit for the stimulus contrastG→0
implies the only admissiblev5v* , which means that the
traveling pulse solution has a unique velocityv* that is in-
dependent from the stimulus, and determined only by
network dynamics. Solutions of this type have been analy
before for networks with saturating threshold functions
Ref. @28#. In this case the traveling pulse solution is caus
purely by the asymmetric structure of the network, para
etrized here by the variableb. When the stimulus is no
uniform, the traveling pulse solution exists only when t
stimulus velocity is not too different from the intrinsic velo
ity v* . The smaller the contrastB, the smaller is the range o
stimulus speedsv for which a traveling pulse solution exists
This range is also influenced by the time constantt. Smaller
t lead to a larger velocity range.

E. Optimal velocity

The network presented here is asymmetric, and has
own intrinsic velocityv* determined by the asymmetry pa
rameterb. When the network is driven by the stimulus mo
ing at different velocities the amplitude of the solution
modulated as a function of the velocity. This dependen
defines thevelocity tuning curve, which can be measured i
physiological experiments. To characterize the velocity t
ing curve fully in this network is not easy sinceuc can only
be determined numerically. We focus, therefore, on find
the optimal stimulus velocity that leads to the maximal me
activity r 0.

Note that r 0 in Eq. ~28! only depends onuc , but not
directly on v. Furthermore,r 0 depends onuc only through
cos(uc)/f0(uc) as

r 0~uc!5@~12e!C2T#@2J02cos~uc!/ f 0~uc!#
21.

For ucP@0,p# it is easy to check thatf 0(uc) is monotoni-
cally increasing, and consequently cos(uc)/f0(uc) is mono-
tonically decreasing. Overall,r 0(uc) is a monotonically de-
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creasing function ofuc . Therefore, the optimal velocityvm

for which r 0 is maximal corresponds to the smallest value
uc in Eq. ~30!, that is vm[argmaxv r 0„uc(v)…
5argminv uc(v).

Taking the derivative with respect tov on both sides of
Eq. ~30! and using the conditionduc(vm)/dv50 yields

vm52
J1f 1 sin~b!

t~12B2!
.

When the stimulus contrast is small,G!1, we haveB
!1 and J1f 1'1/cos(b). Substituting this result into the
above equation, we find for weak stimulus contrastvm'v* .
This implies that the optimal velocity for which the mea
activity is maximal is the intrinsic velocity. This is a nic
property in the sense that it relates the optimal stimulus
locity to the network structure. By changing the asymme
parameterb, the network can have different preferred veloc
ties. Notice that the approximate equality between the o
mal vm and the intrinsicv* holds only if the stimulus con-
trast is low.

F. Stability analysis of the traveling pulse

A stability analysis can be carried out by perturbing t
dynamics of the Fourier components in Eqs.~25!–~27!. The
final linearized perturbation dynamics is shown in the A
pendix. In the case wheneC!1, the perturbed dynamics ca
be simplified into

td ṙ 05~p21J0uc21!dr 01p21J1 sin~uc!dr 1 , ~32!

td ṙ 15p21 cos~b!sin~uc!J0dr 0

1$211~2p!21J1@uc1sin~2uc!/2#cos~b!%dr 1 .

~33!

G. Simulation results for the linear threshold model

Figure 5 shows the comparison between the results f
the mathematical analysis and the simulations. Panel~a!
shows the speed tuning curve plotted as values ofr 0 and r 1
with respect to different stimulus velocitiesv. The solid and
dashed lines indicate calculation results, and the dotted l
represent those from numerical simulations. Panel~b! shows
the largest real part of the eigenvalues of the stability ma
obtained by linearizing the three-dimensional Fourier co
ponent dynamics around the stationary solution as descr
in the preceding section. For stimulus velocities outside
certain range, the maximum of the real parts of the eigen
ues becomes positive indicating a loss of stability of t
form-stable solution. To verify this result we calculated t
variations ofr 0 andr 1 over time in the simulation. Panel~c!
shows the variations as a function of the stimulus velocity.
the velocities for which the eigenvalues indicate a loss
stability the variations ofr 0 and r 1 suddenly increase, con
sistent with our interpretation.

Like the results shown before for the step function mo
~Fig. 3!, Fig. 6 illustrates the space-time evolution of th
4-7
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activity. The left panel shows the propagation of the for
stable peak over time, whereas the right panel shows
solution that arises when stability is lost. Like those in t
model with a step threshold, lurching activity pulses arise
a whole regime of different parameters for networks t
show substantially direction selective behavior.

The phase diagram of the form-stable traveling pulse
lution is plotted in Fig. 7, where we show the range of stim
lus velocity for a stable traveling pulse as the asymme
parameterb, and consequently the intrinsic velocity@v* 5
2tan(b)/t#, changes. The stable region forv is typically
located around the intrinsic velocityv* .

FIG. 5. Traveling pulse solution and its stability in the line
threshold model. Panel~a! shows the velocity tuning curves ofr 0

andr 1. The dotted lines indicate numerical simulation results, wh
solid and dashed lines are the results from our analytical solut
The theoretical results fit well the simulation results in the range
velocity between the two vertical dashed lines. Panel~b! shows the
maximum of the real parts of eigenvalues of the stability ma
obtained by perturbing the dynamics around the stationary solu
For stimulus velocities outside a certain range this value beco
positive, indicating a loss of stability of the form-stable solutio
Panel~c! shows the variations ofr 0 ~solid curve! and r 1 ~dashed
curve! over time determined from the simulation. A nonzero va
ance signifies a loss of stability for the traveling pulse soluti
consistent with the eigenvalue analysis in panel~b!. The velocityv
is normalized by the time constant of the dynamics in
unit of rad/t. Parameters used areC55, e50.01, T54.9,
J0529.8, J2513.5, andb50.46.

FIG. 6. Traveling pulse and lurching wave in the linear thre
old model. Shown here is a color-coded plot of spatial-tempo
evolution of the activitym(x,t). The left panel shows the propaga
tion of the form-stable peak over time, whereas the right pa
shows the lurching activity wave that arises when stability is lo
05190
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So far, we have shown the traveling pulse and lurch
wave solutions in models with step threshold and line
threshold activation functions. The development of direct
selectivity of the travel pulse solutions among certain vel
ity range and loss of stability when outside the range are
confined only to these two types of models. To demonstr
this, we simulate the dynamics Eq.~1! with a sigmoidal
shaped activation function and an asymmetric interact
kernel. Again, we observe the tuning of neural activities
input velocities, and the bifurcation of traveling pulse so
tions to lurching waves when the velocity of the input
outside a certain range~Fig. 8!.

V. CONCLUSION

In this paper we have presented a mathematical ana
of a class of models that account for the direction selectiv
by asymmetric lateral connections between cortical neuro
Given the large number of recurrent connections in the vis
cortex, it seems plausible that lateral connections play
important role for the realization of direction selectivi
@6,7#. Contrasting with earlier works on such models@8,15#,
we have presented a mathematical analysis of the full n
linear dynamics of such networks that takes the nonlin
response functions of the neurons into account.

One result from our analysis is that such recurrent mod
for a certain regime of stimulus speeds, have traveling pu
solutions that are form stable and move with the same sp
as the stimulus. We have termed such solutionsstimulus-
locked traveling pulses. In the stationary state, these sol
tions have space-time characteristics that is also compa
with other models for direction selectivity, e.g., motion e
ergy models with feedforward structure, or models with li
ear feedback. In particular, the recurrent mechanism that
analyzed can account for biologically realistic degrees of
locity tuning of cortical neurons@8#. The preferred speed o
the neurons in such recurrent models is determined by

n.
f

n.
es
.

,

-
l

l
.

FIG. 7. Stable regime of traveling pulse solutions. Shown h
is the regime velocitiesv for which a stable traveling pulse solutio
arises as the intrinsic velocityv* changes. The intrinsic velocityv*
depends on the asymmetry variableb of the interaction kernel.
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NONLINEAR DYNAMICS OF DIRECTION-SELECTIVE . . . PHYSICAL REVIEW E 65 051904
network structure. For example, we show that for the mo
with linear threshold activation function, the preferred spe
for input signals with small contrast is close to the equil
rium speed of the self-generated traveling pulse solution
the absence of a time-dependent stimulus. The speed tu
in the nonlinear model that we analyzed arises because
sufficiently strong interaction, the network tends to stabil
a traveling peak solution that ‘‘locks’’ to the moving activit
peak of the stimulus. This solution becomes unstable if
locking is lost.

Our stability analysis shows that the traveling pulse so
tion is stable only within a certain regime of stimulus spee
At the borders of this regime a bifurcation arises and
stimulus-locked solution becomes unstable. Such spe
dependent bifurcations cannot arise in the classical feed
ward models, and in networks with linear feedback. For s
networks the solutions are either always stable, or the
work is unstable.

An important observation in our simulations is that t
loss of stability of the stimulus-locked solution is frequen
accompanied by the formation oflurching activity pulses.
Lurching activity has been described by different other
thors in brain slices@13,14#, and in artificial spiking net-
works without time-dependent inputs@11,12#. Our simulation
results imply that spiking neurons are not necessary for
generation of lurching activity waves if a moving stimulus
present. Such lurching waves cannot be produced by a f
forward network, in which the output of the network is a
ways phase locked to the stimulus. Moreover, there is
stability issue in feedforward networks. Therefore, the bif

FIG. 8. Traveling pulse solution and its stability with a sigmo
dal shaped activation function. Panel~a! shows that mean pea
activity of the moving solutions and panel~b! plots the variations of
the solution averaged over time. The traveling pulse solution
stable only for velocities between the two vertical lines. The vel
ity v is normalized by time constantt in the unit of rad/t. The
activation function used isf (x)51/@11exp(22x)#. The interaction
kernel is the difference of two Gaussian functions, but with
center shifted, w(x)5Ae exp@2(x2m)2/(2se

2)#2Ai exp@2(x
2m)2/(2si

2)# with se50.08, s i51, Ae562, Ai537, and m
50.05. The input used is a rectified bumpb(u,t)57exp$@cos(u
2vt)22#1%.
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cation observed in recurrent networks cannot appear in fe
forward networks. In models with linear feedback, oscil
tions of the activity could potentially be obtained, e.g., if t
network contains multiple neuron populations that are c
nected by excitatory connections. Still it would be difficult
account for the speed dependence of the bifurcation.

With respect to the mathematics, we have tried to char
terize a class of solutions of spatially continuous neural n
works that is different from solutions have been analyzed
previous work that apply similar mathematical methods.
the presence of a time-dependent stimulus, the stimu
locked traveling pulse solution is different from the stab
stationary solutions of networks with static inputs that ha
been repeatedly analyzed in the literature~e.g.
@16,17,19,21,29#!. The stimulus-locked solution is also dif
ferent from self-generated traveling waves or pulses t
have been studied in different contexts@28#. For such solu-
tions the pulse propagates with an equilibrium speed tha
specified by the network dynamics, whereas for the stimu
locked traveling pulse solution the propagation speed
given by the stimulus. At least for the linear threshold mod
with small contrast, the speed regime for which a stimul
locked traveling pulse solution exists is, however, in a nei
borhood of the optimal speed with which a self-genera
pulse would propagate in the absence of a time-depen
stimulus. The proposed recurrent mechanism for direct
selectivity exploits a kind of ‘‘resonance’’ between the te
dency of the network to stabilize a traveling pulse soluti
with characteristic speed and the incoming time-depend
stimulus activity.

We conclude from our analysis that the observation
lurching activity waves in populations of direction-selecti
neurons in the visual cortex would be a strong indicator
the relevance of the recurrent mechanism for direction se
tivity that we discussed in this paper. Lurching waves and
related bifurcations might be experimentally observable
recording from populations of direction selective neuro
The neurons first would have to be clustered according
their speed selectivity and the centers of their recep
fields. The responses would have to be time aligned w
respect to the stimulus. Then activity waves could potentia
be observed either by simple histogramming within the d
ferent spatiotemporal bins, or by using more sophistica
techniques for interpolation, either based on standard re
larization or Bayesian techniques@30–32#. A potential com-
plication in the visual cortex might be that multiple popul
tions of neurons with different speed selectivity might inhib
each other@8#. The same mechanism, however, might
relevant in other cortical areas as well, that are experim
tally easier to access. One example is the direction-selec
place cells in the hippocampus that have the advantage
multiunit recordings with more than 100 electrodes are p
sible @33#.
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APPENDIX: STABILITY ANALYSIS

1. Stability of the traveling pulse solution in the step
threshold model

The stability of the traveling pulse solution is analyzed
perturbing the stationary solution in the moving coordin
system. LetdU(j,t) be a small perturbation ofU* (j). The
linearized perturbation dynamics reads

t
]dU

]t
2tv

]dU

]j
1dU~j,t !

52w~j2j1* !dj11w~j2j2* !dj2 , ~A1!

where dj i ( i 51,2) are the perturbations of the bounda
points of the exited regime from the stationary values ofj i*
with j i5j i* 1dj i satisfyingU(j i ,t)50. Note thatdj i is not
independent ofdU(j,t), and the dependence can be fou
through

U~j i* 1dj i ,t !5U~j i* ,t !1
]U~j i* ,t !

]j
dj i1O~dj i

2!50.

SinceU(j i* ,t)5dU(j i* ,t), to the first order we have

dj i52dU~j i* ,t !/ci* ,

whereci* [dU* (j i)/dj. Substituting this back into the pe
turbed dynamics, we derive the perturbed dynamics with p
turbations inU only

t
]dU

]t
2tv

]dU

]j
1dU~j,t !5

w~j2j1* !

c1*
dU~j1* ,t !

2
w~j2j2* !

c2*
dU~j2* ,t !.

To check its stability, we substitute a solution of the for
dU(j,t)5eltY(j) into the above dynamics and derive th
equation forY(j)

2tvY8~j!1~11tl!Y~j!5
w~j2j1* !

c1*
Y~j1* !

2
w~j2j2* !

c2*
Y~j2* !.

We solve this equation by first assuming thatY(j1* ) and
Y(j2* ) are constant, and afterwards we give self-consis
conditions for the solutions atj1* and j2* to satisfy. The
solution of the above equation is

Y~j!5
K~j2j1* !

c1* ~11tl!
Y~j1* !2

K~j2j2* !

c2* ~11tl!
Y~j2* !, ~A2!

The solutionY(j) in Eq. ~A2! has to satisfy two self-
consistency equations for the solutions atj1* andj2*
05190
e
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Y~j1* !5
K~0!

c1* ~11tl!
Y~j1* !2

K~j1* 2j2* !

c2* ~11tl!
Y~j2* !,

Y~j2* !5
K~j2* 2j1* !

c1* ~11tl!
Y~j1* !2

K~0!

c2* ~11tl!
Y~j2* !.

For the above equations to have a solution, the transcen
tal Eq. ~9! has to be satisfied. From this equation the eig
valuesl can be found numerically. The traveling pulse s
lution is asymptotically stable only if the real parts of a
eigenvaluesl that solve Eq.~9! are nonpositive.

2. Stability of the traveling pulse solution in the linear
threshold model

The stability analysis is carried out by perturbing the d
namics of the Fourier components in Eqs.~25!–~27!. The
general procedure is to perturb the dynamics first, which
volves the perturbation of terms suchduc , dF, andDI 1(t).
To determine these terms, we subsequently perturb E

~21!–~23!. Defining F̃[F2u0 and C̃[C2u0, the per-
turbed linearized dynamics can be summarized as follow

td ṙ 05S J0uc

p
21D dr 01J1 cos~F̃2C̃1b!

sin~uc!

p
dr 1

2eC sin~F̃ !
sin~uc!

p
dC̃,

td ṙ 15cos~F̃2C̃!
sin~uc!

p
J0dr 01S 211J1H uc

2p
cos~b!

1
sin~2uc!

4p
cos@2~F̃2C̃!1b#J D dr 1

2eCH uc

2p
sin~C̃!1

sin~2uc!

4p
sin~2F̃2C!J dC̃,

tr 1dĊ̃5sin~F̃2C̃!
sin~uc!

p
J0dr 01S 2tv2J1H uc

2p
sin~b!

2
sin~2uc!

4p
sin@2~F̃2C̃!2b#J D dr 1

2eCH uc

2p
cos~C̃!2

sin~2uc!

4p
cos~2F̃2C!J dC̃.

To determine the stability of the traveling pulse solutio
we have to analyze the dynamics of these three coupled

ferential equations. IfeC!1, then the dynamics ofdĊ̃ is
decoupled from that ofdr 0 anddr 1 and the stability condi-
tion can be approximated by the stability of the two dyna
ics Eqs.~32! and ~33!.
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